The First Crystallographically Characterized Transition Metal Buckybowl Compound: $\mathrm{C}_{30} \mathrm{H}_{12}$ Carbon-Carbon Bond Activation by $\mathbf{P t}\left(\mathbf{P P h}_{3}\right)_{2}$

Raef M. Shaltout, Renata Sygula, Andrzej Sygula, Frank R. Fronczek, George G. Stanley,* and Peter W. Rabideau*
\section*{Department of Chemistry, Louisiana State University Baton Rouge, Louisiana 70803-1804}

Received October 3, 1997
Semibuckminsterfullerene $\left(\mathrm{C}_{30} \mathrm{H}_{12}, \mathbf{1}\right)$ represents half of the buckminsterfullerene (C_{60}) molecule with the rim carbons capped by hydrogen atoms. ${ }^{1-3}$ Unlike C_{60}, however, $\mathrm{C}_{30} \mathrm{H}_{12}$ has a readily accessible internal surface and π-system for the potential coordination of transition metal complexes. We have been studying the metal coordination chemistry of curved polyaromatic hydrocarbons such as corannulene $\left(\mathrm{C}_{20} \mathrm{H}_{10}\right)$ and other buckybowls and report here the first structural characterization of the unusual product from the reaction of $\operatorname{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathbf{1}$.

1
$\mathrm{C}_{30} \mathrm{H}_{12}$ and $\mathrm{Pt}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ were reacted together at room temperature in toluene under inert atmosphere conditions for 15 h and then refluxed for $1 \mathrm{~h} . \mathrm{Pt}\left(\eta^{2}-\sigma-\mathrm{C}_{30} \mathrm{H}_{12}\right)\left(\mathrm{PPh}_{3}\right)_{2}, 2$, was isolated in low yield ($\sim 5-10 \%$) via column chromatography and recrystallized by slow evaporation of a benzene/cyclohexane solution. ${ }^{4}$ A single-crystal X-ray structural determination revealed that the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ unit has indeed coordinated to the buckybowl (Figure 1). ${ }^{5,6}$ But instead of binding to one of the localized $\mathrm{C}=\mathrm{C}$ double bonds on either the inner or outer surface the $\operatorname{Pt}(0)$ center has oxidatively added to and broken one of the rim $\mathrm{C}-\mathrm{C}$ bonds to form an η^{2} - σ-bonded $\operatorname{Pt}(\mathrm{II})$-buckybowl compound.

The structure of $\mathbf{2}$ is shown in Figure 1 along with selected bond distances and angles in Table 1. As one might qualitatively expect, the Pt center is folded 42° outward (from the mean plane defined by atoms $\mathrm{C} 1-\mathrm{C} 5$) to the less sterically hindered exoface of the $\mathrm{C}_{30} \mathrm{H}_{12}$ ligand (Figure 1b). The breaking of the $\mathrm{C} 1-$ $\mathrm{C} 5 \sigma$-bond in $\mathbf{1}$ will naturally splay the resulting sp^{2} hybrid orbitals to the position of the Pt center shown in Figure 1. The 9,10-dihydroplatina-anthracene system, $\operatorname{Pt}\left(\mathrm{PR}_{3}\right)_{2}\left(\sigma-\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$,

[^0]

Figure 1. (top) ORTEP plot of 2. (bottom) Stick figure representation of 2 with the phenyl rings on the PPh_{3} ligands omitted for clarity.

3, prepared from the dilithioorganic precursor and not from a $\mathrm{C}-\mathrm{C}$ bond breaking reaction, is the most analogous model compound that has been structurally characterized. ${ }^{7}$

2

3

The bond distances and angles about the metal centers in 2 and $\mathbf{3}$ are quite similar, except for the $\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 5$ angle, which is opened up 6° in $2\left(87.9(5)^{\circ}\right.$ vs $81.3(4)^{\circ}$ for $\left.\mathbf{3}\right)$ and the larger C1-C5 separation ($2.84 \AA$ in 2 vs $2.67 \AA$ in $\mathbf{3}$). This reflects the considerably greater ring strain present in the curved structure of precursor 1. The other structural differences present are also related to the larger and more sterically demanding structure of 2 relative to 9,10 -dihydroplatina-anthracene. There is a distinct 16° rotation of the $\mathrm{PPh}_{3}-\mathrm{Pt}-\mathrm{PPh}_{3}$ plane relative to the $\mathrm{C}-\mathrm{Pt}-\mathrm{C}$ plane caused by steric hindrance between the PPh_{3} and the $\mathrm{C}_{30} \mathrm{H}_{12}$ ligands. The higher flexibility of the 9,10 -dihydroplatinaanthracene moiety also leads to greater folding of the anthracene environment about the Pt away from square planar (average C_{6} dihedral angle of 37.5°) relative to $2\left(23.5^{\circ}\right)$.

The structural features of the $\mathrm{C}_{30} \mathrm{H}_{12}$ ligand in $\mathbf{2}$ are surprisingly similar to that predicted from ab inito calculations for 1, particularly with respect to the $\mathrm{C}-\mathrm{C}$ bond distances, which, at first glance, appear to be somewhat randomly distributed as short and longer distances. ${ }^{6}$ The main difference, of course, is that

[^1] Trans. 1990, 1433-1439.

Table 1. Selected Bond Distances (\AA) and Angles (deg) for $\mathbf{2}^{a}$

Pt-P1	2.348(4)	$\mathrm{Pt}-\mathrm{P} 2$	$2.323(4)$
$\mathrm{Pt}-\mathrm{C} 1$	2.04(2)	$\mathrm{Pt}-\mathrm{C} 5$	2.05(1)
C1-C2	1.37(2)	C1-C6	1.44(2)
C2-C3	1.45(2)	C2-C9	1.45(2)
C3-C4	1.49(2)	C3-C12	1.41(2)
C4-C5	1.47(2)	C4-C15	1.37(2)
C5-C18	1.39(2)	C6-C7	1.41(2)
C7-C8	1.36(2)	C8-C9	1.42(2)
C9-C10	1.48(2)	C10-C11	1.33(2)
C11-C12	1.44(2)	C11-C20	1.50(2)
C12-C13	1.39(2)	C13-C14	1.36 (2)
C13-C19	1.35(2)	C14-C15	1.41(2)
C14-C26	1.45(2)	C15-C16	1.37(2)
C16-C17	1.43(2)	C16-C27	1.43(2)
C17-C18	1.42(2)	C17-C30	1.43(2)
C19-C20	1.41(2)	C19-C24	1.41(2)
C20-C21	1.37(2)	C21-C22	1.43(2)
C22-C23	1.34(2)	C23-C24	1.42(2)
C24-C25	1.44(2)	C25-C26	1.37(2)
C26-C27	1.51(2)	C27-C28	1.38(2)
C28-C29	1.42(2)	C29-C30	1.38(2)
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{P} 2$	96.0(1)	$\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 5$	87.9(5)
$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C} 5$	89.9(4)	$\mathrm{P} 2-\mathrm{Pt}-\mathrm{C} 1$	88.0(4)
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{C} 5$	164.8(4)	$\mathrm{P} 1-\mathrm{Pt}-\mathrm{C} 1$	171.9(4)
$\mathrm{Pt}-\mathrm{C} 1-\mathrm{C} 2$	125(1)	$\mathrm{Pt}-\mathrm{C} 1-\mathrm{C} 6$	120(1)
$\mathrm{Pt}-\mathrm{C} 5-\mathrm{C} 4$	113.7(9)	$\mathrm{Pt}-\mathrm{C} 5-\mathrm{C} 18$	130(1)
C2-C1-C6	115(1)	C3-C2-C9	114(1)
C4-C3-C12	115(1)	C4-C5-C18	114(1)
C10-C11-C20	133(1)	C12-C11-C20	106(1)
C11-C12-C13	106(1)	C12-C13-C19	111(1)
C15-C14-C26	111(1)	C4-C15-C16	125(1)
C14-C15-C16	106(1)	C15-C16-C27	112(1)
C17-C16-C27	125(1)	C16-C17-C18	115(1)
C16-C17-C30	113(1)	C18-C17-C30	130(1)
C5-C18-C17	126(1)	C13-C19-C20	109(1)
C20-C19-C24	127(1)	C11-C20-C19	105(1)
C11-C20-C21	136(1)	C19-C24-C23	112(1)
C23-C24-C25	127(1)	C14-C26-C25	115(1)
C14-C26-C27	103(1)	C25-C26-C27	138(1)
C16-C27-C26	105(1)	C26-C27-C28	135(1)
C28-C29-C30	125(1)		

[^2] more than $\pm 4^{\circ}$ from 120° are listed. Values in parentheses are esd's.
the curvature of the bowl is less in $\mathbf{2}$ due to the breaking of one of the rim five-membered-ring $\mathrm{C}-\mathrm{C}$ bonds. The calculated average quaternary carbon atom pyramidalization angle (POAV1) for $\mathbf{1}$ is 4.8° versus 2.9° for the X-ray structure on $\mathbf{2 .}^{6,8-11}$

Homogeneous $\mathrm{C}-\mathrm{C} \sigma$-bond breaking reactions are quite difficult and usually only occur with strained rings such as cyclopropane, ${ }^{12}$ biphenylene, ${ }^{13-15}$ or when a $\mathrm{C}-\mathrm{C} \sigma$-bond is held in close proximity to a metal center combined with the generated aromaticity of the product. ${ }^{16}$ In the case of saturated hydrocarbons such as cyclopropane, $\mathrm{C}-\mathrm{H}$ bond activation is believed to be the first step, followed by $\mathrm{C}-\mathrm{C}$ bond cleavage. ${ }^{12}$ In the case of unsaturated π-systems, coordination of the metal center to the π-system followed by oxidative addition of the $\mathrm{C}-\mathrm{C}$ bond to the metal center represents an alternate mechanistic possibility. Jones and co-workers have carefully studied the $\mathrm{C}-\mathrm{C}$ bond breaking

[^3]reactions in biphenylene and find that $\mathrm{Cp} * \mathrm{Rh}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)_{2}$ accomplishes this by initial $\mathrm{C}-\mathrm{H}$ bond activation followed by $\mathrm{C}-\mathrm{C}$ bond cleavage (and subsequent reformation of the $\mathrm{C}-\mathrm{H}$ bond). ${ }^{14}$ They have tried the same reaction with biphenylene and $\mathrm{M}\left(\mathrm{PEt}_{3}\right)_{3}$ ($\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$) and also see $\mathrm{C}-\mathrm{C}$ bond cleavage reactions, but in this case they believe that $\mathrm{C}-\mathrm{C}$ bond breaking is probably preceded by simple $\eta^{2}-\pi$-arene coordination. ${ }^{15}$ To our knowledge, this is the first example of metal induced $\mathrm{C}-\mathrm{C}$ bond cleavage in a nonheterocyclic five-membered ring. This is probably related to the fact that $\mathbf{1}$ possesses very unusual, highly strained fivemembered rings. We believe that the cleavage is proceeding via simple π-coordination of $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ to one of the rim $\mathrm{C}=\mathrm{C}$ bonds adjacent to the five-membered-ring site in $\mathbf{1}$, followed by $\mathrm{C}-\mathrm{C}$ oxidative addition.

That $\mathbf{1}$ should possess strained $\mathrm{C}-\mathrm{C}$ bonds along the rim of the molecule is not surprising. The synthesis of 1 requires hightemperature pyrolysis to provide enough thermal energy for the more "open" precursor species to close the rim bonds to form the curved buckybowl. ${ }^{1}$ The site of $\mathrm{C}-\mathrm{C}$ bond cleavage is also where one would predict the maximum release of steric strain, i.e., the five-membered, formally nonaromatic ring sites, which are the source of curvature in $\mathbf{1}$. These also are the longest and most strained $\mathrm{C}-\mathrm{C}$ bonds in the structure ($1.51 \AA$ from the X-ray structure on 2, $1.53 \AA$ from ab initio calculations on 1). The 3 -fold symmetry in $\mathbf{1}$, of course, means that $\mathrm{C}-\mathrm{C}$ bond breaking can occur at any of the three equivalent rim five-membered-ring exo $\mathrm{C}-\mathrm{C}$ bonds.

The coordination of transition metal centers to these unusual curved polyaromatic hydrocarbon ligands is a new area of organometallic chemistry and several researchers are actively working on preparing new complexes and studying their reaction chemistry. Of course, the coordination of metals to C_{60} has also garnered considerable interest, although the coordination is generally limited to $\eta^{2}-\pi$-coordination. ${ }^{17}$ Rubin and co-workers were the first to demonstrate the Co initiated $\mathrm{C}-\mathrm{C}$ bond cleavage in a derivatized version of $\mathrm{C}_{60} .{ }^{18}$ Considerably less common is the use of fullerene subunits as ligands for transition metal centers. O'Connor, Siegel, and co-workers recently published a paper on the coordination of $\mathrm{Cp} * \mathrm{Ru}$ to corannulene, the smallest curved polyaromatic hydrocarbon ligand, in an η^{6}-coordination mode. ${ }^{19}$ Although they did not have an X-ray structure, it is likely that the Ru is coordinated to an exo-face of one of the rim C_{6} corannulene rings. Balch and co-workers ${ }^{20}$ have reported an X-ray structure on the more highly curved polyaromatic $\mathrm{C}_{36} \mathrm{H}_{12}$, first prepared by Scott and co-workers, and are working on preparing transition metal compounds of this ligand. ${ }^{21}$ It is clear that interest in these novel ligands will continue to grow as improved syntheses are reported for these and other curved polyaromatic hydrocarbon compounds.

Acknowledgment. We thank the National Science Foundation (CHE9420908) and the Division of Chemical Sciences, Office of Basic Energy Research, U.S. Department of Energy for financial support.

Supporting Information Available: X-ray experimental details with positional parameters and full bond distances and angles; comparison of X-ray bond lengths for 2 with ab initio calculated bond lengths for $\mathbf{1}$; calculated pyramidalization values for 2 (11 pages). See any current masthead page for ordering and Internet access instructions.

JA973454D

[^4]
[^0]: (1) Rabideau, P. W.; Abdourazak, A. H.; Folsom, H.; Marcinow, Z.; Sygula, A.; Sygula, R. J. Am. Chem. Soc. 1994, 116, 7891-2.
 (2) Rabideau, P. W.; Sygula, A. Acc. Chem. Res 1996, 29, 235-42.
 (3) Hagen, S.; Bratcher, M. S.; Erickson, M. S.; Zimmermann, G.; Scott, L. T. Angew. Chem., Int. Ed. Engl. 1997, 36, 406-408.
 (4) Spectroscopic data: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.2\left(\mathrm{td}, 1 \mathrm{H}, J_{\mathrm{X}-\mathrm{H}}=\right.$ $7 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{H}}=110 \mathrm{~Hz}$, X coupling could be to a P or H), $5.7 \mathrm{~Hz}\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{X}-\mathrm{H}}\right.$ $=7 \mathrm{~Hz}, \mathrm{X}$ coupling could be to a P or H$), 6.6\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{X}-\mathrm{H}}=7 \mathrm{~Hz}, \mathrm{X}\right.$ coupling could be to a P and/or H), 6.9-7.3 (m, PPh_{3} phenyl H), 7.5-7.8 (m); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4} \mathrm{ref}$) 26.1 (pseudo-singlet, $J_{\mathrm{Pt}-\mathrm{P}}=3876 \mathrm{~Hz}$, the Pt satellites show a doublet - doublet ${ }^{31} \mathrm{P}$ pattern, indicating that the primary ${ }^{31} \mathrm{P}$ peak at 26.1 is not a first-order singlet, consistent with the formal lack of symmetry and presence of magnetic inequivalence between the two PPh_{3} groups in 2).
 (5) Crystal Data: monclinic $P 2_{1} / n, \mathrm{Z}=4, a=14.646(6) \AA, b=16.392$ (3) $\AA, c=28.02(1) \AA, b=95.78(3)^{\circ}, V=6691(1) \AA .^{3}$ Data collected at 150 K . Refinement on F^{2} converged at $R=7.4 \%, R_{\mathrm{w}}=6.2 \%$, with $\operatorname{GOF}\left(\mathrm{F}^{2}\right)=1.383$. There were three benzene and one cyclohexane solvent molecules present in the unit cell. One of the benzenes is disordered with a likely partial substitution of cyclohexane at that site.
 (6) Supporting Information. See masthead for instructions.

[^1]: (7) Alcock, N. W.; Bryars, K. H.; Pringle, P. G. J. Chem. Soc., Dalton

[^2]: ${ }^{a}$ Only angles for the buckybowl portion of the structure that deviate

[^3]: (8) Haddon, R. C.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137-142.
 (9) Haddon, R. C. Acc. Chem. Res 1988, 21, 243-249.
 (10) Haddon, R. C. J. Am. Chem. Soc. 1990, 112, 3385-3389.
 (11) Haddon, R. C. Science 1993, 261, 1545-1550.
 (12) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 73467355.
 (13) Perthuisot, C.; Jones, W. D. J. Am. Chem. Soc. 1994, 116, 36473648.
 (14) Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Jones, W. D. Organometallics 1997, 16, 2016-2023.
 (15) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. Submitted for publication.
 (16) Crabtree, R. H.; Dion, R. P. J. Chem. Soc., Chem. Commun. 1984, 1260-1261.

[^4]: (17) Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res 1992, 25 , 134-142.
 (18) Arce, M.-J.; Viado, A. L.; An, Y.-Z.; Khan, S. I.; Rubin, Y. J. Am. Chem. Soc. 1997, 118, 3775-3776.
 (19) Seiders, T. J.; Baldridge, K. K.; O’Conner, J. M.; Siegel, J. S. J. Am. Chem. Soc. 1997, 119, 4781-4782.
 (20) Forkey, D. M.; Attar, S.; Noll, B. C.; Koerner, R.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 1997, 119, 5766-5767.
 (21) Scott, L. T.; Bratcher, M. S.; Hagen, S. J. Am. Chem. Soc. 1996, 118, 8743-8744.

